User Image User
User Image User

Noch Fragen?

Warum sind Motoryachten trotz wesentlich höherer PS-Zahlen deutlich langsamer als Pkw?

Frage Nummer 56374
Antworten (20)
Es gibt 2 Arten von Booten / Schiffen, lieber Amos. Man unterteilt sie in Gleiter und Verdränger. Eine Jacht gehört zur Klasse der Verdränger (bis auf wenige Ausnahmen). Der größte Teil der Motorleistung wird zur Verdrängung des Mediums Wasser gebraucht, zum Überwinden des Widerstandes des Wassers. Ein Gleiter gleitet bei genügend Fahrt auf die Wasseroberfläche auf, sodass nur noch wenig vom Bootsrumpf und die Schraube(n) im Wasser sind. Durch den dadurch geringeren Wasserwiderstad erreichen Gleiter wesentlich höhere Geschwindigkeiten. Ein Verdränger liegt aber stabiler in dem Wasser, daher werden komfortable Jachten in Verdrängerbauweise gebaut. Ihre Höchstgeschwindigkeiten liegen dadurch allerdings lediglich bei etwa 50 Knoten, weil dann der Wasserwiderstand die Vortriebsleistung der Motoren egalisiert.
Ein Auto hat lediglich die 4 Räder, mit denen es Kontakt mit dem Boden hat, Ein Verdränger hat immer das ganze Rumpfvolumen im Wasser. Wasser ist wesentlich dichter als Luft, also braucht es wesentlich mehr Vortriebskraft, um diesen Widerstand zu überwinden. Die mathematische Gleichung zur Berechnung der Motorleistung zur Überwindung des Widerstands Luft oder Wasser erspare ich uns jetzt. Aber auch hier wächst der Widerstand im Quadrat zur Geschwindigkeit.
Man kann es auch einfacher beantworten: Motorboote haben einen größeren Widerstand zu überwinden. Sich durch das Wasser pflügen zu ist aufwendiger als den Rollwiderstand von Autoreifen überwinden zu müssen. Analog: Schwimmen ist anstrengender als Laufen.
@ bh_roth
Es tut mir leid, dir widersprechen zu müssen, aber der Luftwiderstand steigt exponentiell zur Geschwindigkeit an, nicht quadratisch.
@Dara: Es muss dir nicht leid tun. Ich kann mit Richtigstellungen umgehen.
@Dara: als Nichtmathematiker glaube ich aber, daß quadratisch ebenfalls exponentiell ist. ² dürfte der Exponent sein. Oder irre ich mich?
@ Amos
Expontentiell bedeutet, dass ein Vorgang nach einer e-Funktion abläuft. Die unterscheidet sich von der quadratischen Funktion. Die e-Funktion kennen wir vom klassischen Fieberthermometer, da läuft das genau so ab, deswegen braucht man die 10 Minuten.
Da irrst du dich Amos. Exponentiell heißt eine Laufzeit a^x, d.h. x ist im Exponenten, bei quadratischer Laufzeit ist der potenzierte Ausdruck x.
Bitte sagt mir, dass diese Frage nebst der Antworten nicht ernst gemeint ist
Das wußte ich nicht oder hatte es vergessen. Abi liegt schon ein paar Jahre zurück.
Anstieg natürlich nicht Laufzeit. Kommt halt von der Arbeit her, da ich viel programmiere und immer an Laufzeit denke.
Caro Musca, die Frage war wirklich ernst gemeint. Und die Antworten zeigen, daß man sich hier absolut in einem freundlichen Ton wieder austauschen kann. (Konfusius und rocktan scheinen eliminiert zu sein!?)
Bei Wikipedia scheint es aber so, dass es doch quadratisch ist:

Fall mit Luftwiderstand: Newton-Reibung [Bearbeiten]
Siehe auch: Newton-Reibung
Ab einer gewissen kritischen Geschwindigkeit (siehe Reynolds-Zahl) geht die laminare Luftströmung am Körper vorbei in eine turbulente über. Dies führt dazu, dass der Luftwiderstand nun quadratisch von der Geschwindigkeit abhängt:
@Amos: zumindest die "Aliscafi" gaben mir schon das Gefühl der Geschwindigkeit
@ Zombiejäger
Wikipedia ersetzt keine Bildung. Das hatte ich hier kürzlich schon einmal.
Den Luftwiderstand muss ich halt für die Zombijagd nicht berechnen. Hauptsache ich kenn mich mit Vodoo und Parapsychologie aus :)
@Dara: der Luftwiderstand berechnet sich zu Fr = A/2 * Cw * Rho * v² , wobei A die Querschnittsfläche des Autos darstellt, Cw den von der Form des Autos abhängigen Beiwert, Rho die Dichte der Luft und v die Geschwindigkeit.
Es ist definitiv quadratisch und nicht exponentiell.
Nochmal etwas genauer:

eine Potenzfunktion hat die Form: x^a (a konstant)
(Beispiel x^2), während eine
Exponentialfunktion die Form a^x hat.
(Beispiel 2^x)
Was mir an bh_roth gefällt: Er gibt sogar Fehler zu, wo er gar keine gemacht hat. Da sollten sich andere mal eine Scheibe von abschneiden.
@rumpelstielchen: Ich habe keinen Fehler zugegeben. Ich weiß ja, dass ich recht habe. Ich schrieb nur, dass ich mit Richtigstellungen umgehen kann.